An Overview of Efficient Computation of PageRank
نویسنده
چکیده
With the rapid growth of the Web, users get easily lost in the rich hyper structure. Providing relevant information to the users to cater to their needs is the primary goal of website owners. Therefore, finding the content of the Web and retrieving the users’ interests and needs from their behavior have become increasingly important. Web mining is used to categorize users and pages by analyzing the users’ behavior, the content of the pages, and the order of the URLs that tend to be accessed in order. Web structure mining plays an important role in this approach. Two page ranking algorithms, HITS and PageRank, are commonly used in web structure mining. Both algorithms treat all links equally when distributing rank scores. Several algorithms have been developed to improve the performance of these methods. This paper discusses efficient techniques for computing PageRank. How to rank Web resources is critical to Web Resource Discovery (Search Engine). This paper points out the weakness of current approaches, we discuss several methods for analyzing the convergence of PageRank based on the induced ordering of the pages KeywordsHITS, Web search, web graph, link analysis, PageRank, search in context, personalized search, ranking algorithm, Weighted PageRank, Adaptive PageRank.
منابع مشابه
An Overview of Group Key Management Issues in IEEE 802.16e Networks
The computer industry has defined the IEEE 802.16 family of standards that will enable mobile devices to access a broadband network as an alternative to digital subscriber line technology. As the mobile devices join and leave a network, security measures must be taken to ensure the safety of the network against unauthorized usage by encryption and group key management. IEEE 802.16e uses Multica...
متن کاملWeb-Site-Based Partitioning Techniques for Efficient Parallelization of the PageRank Computation
The efficiency of the PageRank computation is important since the constantly evolving nature of the Web requires this computation to be repeated many times. PageRank computation includes repeated iterative sparse matrix-vector multiplications. Due to the enourmous size of the Web matrix to be multiplied, PageRank computations are usually carried out on parallel systems. Graph and hypergraph par...
متن کاملEfficient Computation of PageRank
This paper discusses efficient techniques for computing PageRank, a ranking metric for hypertext documents. We show that PageRank can be computed for very large subgraphs of the web (up to hundreds of millions of nodes) on machines with limited main memory. Running-time measurements on various memory configurations are presented for PageRank computation over the 24-million-page Stanford WebBase...
متن کاملPageRank Computation Using PC Cluster
Link based analysis of web graphs has been extensively explored in many research projects. PageRank computation is one widely known approach which forms the basis of the Google search. PageRank assigns a global importance score to a web page based on the importance of other web pages pointing to it. PageRank is an iterative algorithm applying on a massively connected graph corresponding to seve...
متن کاملJordan Canonical Form of the Google Matrix: A Potential Contribution to the PageRank Computation
We consider the web hyperlink matrix used by Google for computing the PageRank whose form is given by A(c) = [cP + (1 − c)E]T , where P is a row stochastic matrix, E is a row stochastic rank one matrix, and c ∈ [0, 1]. We determine the analytic expression of the Jordan form of A(c) and, in particular, a rational formula for the PageRank in terms of c. The use of extrapolation procedures is very...
متن کامل